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1 Abstract

Introduction

Neural connectivity plays an important role in the understanding of a number of neurological diseases.1–3 Diffusion MRI

(dMRI) tractography has the potential to noninvasively map this connectivity information in vivo.4 However, efforts to

validate tractography have revealed poor specificity,5 creating a push for new validation methods over a range of spatial

scales.6 The Allen Mouse Brain Connectivity Atlas (AMBCA)7 uses neural-tracer based optical imaging to provide

gold-truth connectivity values for the mouse brain. While an exquisite resource, this method is limited to imaging a

single injection site per specimen, making the construction of a “connectome” extremely labor intensive. Furthermore,

the imaging requires sectioning, which can potentially warp the tissue and results in volumetric data with non-isotropic

resolution. With 12 hours of data collection time, synchrotron microcomputed tomography (microCT) allows for micron-

level isotropic resolution across whole mouse brains with no sectioning. Fibers can be resolved and their local orientations

can be estimated across the whole brain, allowing for the testing of tractography algorithms. In this study, we generated

tractography-derived, mesoscale connectomes from dMRI and microCT data on the same sample and evaluated their

accuracy using tracer data from AMBCA.

Methods

MRI data were acquired of a perfusion-fixed control mouse brain. The brain was imaged with a Bruker 9.4 T magnet,

using a 3D diffusion-weighted SE sequence (150 µm isotropic resolution, 30 directions, b=3000 s/mm2). Fiber orientation

distribution functions (ODFs) were generated using constrained spherical deconvolution in MRtrix.8 The specimen was

then stained with heavy metals in preparation for microCT imaging at beamline 32-ID of the Advanced Photon Source at

Argonne National Lab. The volume was reconstructed at 1.2 µm isotropic resolution. Fiber orientations were estimated

at each voxel using structure tensor analysis.9,10 The orientations were binned across ROIs the size of a single dMRI

voxel, and represented as ODFs on a basis of spherical harmonic functions. The dMRI and microCT data were nonlinearly

registered to the AMBCA template using ANTs registration.11 These transforms were used to warp 467 neuronal tracer

injection ROIs and 632 target structure ROIs into the spaces of each modality. The injection ROIs were used as seed

regions for probabilistic tractography using MRtrix. Connectivity matrices were constructed by summing the number

of streamlines entering each target structure that originated in each injection site. As a control, the same tractography

experiments were performed using random orientation data with the “NullDist2” algorithm in MRtrix.

Results

Figure 1 shows the connectivity matrices. The Spearman rank correlation coefficients between matrix values derived from

tractography and from tracer data were ρ=0.41 for dMRI, ρ=0.47 for microCT and ρ=0.44 for the random control. At

a coarser level of detail, correlations across parent structures increased to ρ=0.76 for dMRI, ρ=0.83 for microCT and

ρ=0.76 for the random control. Figure 2 shows receiver operating curves (ROC) generated by sweeping the number of

streamlines used to define a positive connection in the tractography-derived connectivity matrices, with AMBCA values
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as ground-truth. This analysis resulted in area under the curve (AUC) values of AUC=0.72 for dMRI, AUC=0.75 for

microCT, and AUC=0.74 for the random control. Figure 3 shows ROC curves calculated for groups of connections binned

by the Euclidean distance between the centers of mass of the source and target ROIs. The AUC values for these curves

decreased with increasing distance, falling below control values after 6 mm for microCT and 2 mm for dMRI. Spearman

rank correlation coefficients were also calculated between the in-brain voxels of each tractography density image and the

corresponding tracer image. Figure 4 shows the distribution of these correlation values for microCT, dMRI and the random

control. A paired t-test showed that the microCT coefficients were significantly greater than the control coefficients. Across

all experiments, the average correlation coefficient was around ρ=0.30, while the maximum was ρ=0.59. Figure 5 shows

a visual comparison of tracer and tract density images for these representative values.

Discussion

The correlation coefficients for the connectivity matrices and tract density images are within the range published in

similar validation studies.12,13 Along all metrics, tractography from microCT data modestly outperformed tractography

from dMRI data, indicating the promise of microCT as a dMRI validation modality. However, a significant amount

of mistracking still occurred for nearly all experiments. At this resolution, microCT results were only slightly better

than random tracking, while dMRI results were slightly worse. In the future, this pipeline can be applied to structure-

tensor ODFs binned at higher resolutions from the microCT dataset, allowing for an analysis of the “upper bound” of

tractography performance using orientation data at a much higher spatial resolution than is currently achievable with

dMRI.

Conclusion

These results demonstrate a step towards the process of developing synchrotron microCT as a specimen-specific ground-

truth connectivity modality. They also highlight the care that must be taken when interpreting tractography-derived

connectivity results in light of inherent biases. The relative success of the random tractography shows that much of the

tractography-derived connectivity information can be explained by geometric effects: connection strengths increase for

shorter connection lengths and larger target regions. Accordingly, it is important to verify that tractography not only

properly connects neurological regions of interest, but properly colocalizes with the ground-truth pathways between these

regions.
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2 Figures

Figure 1: Connectivity matrices. Values are shown on a log scale, with units of normalized projection volume for the tracer
matrix and number of streamlines for the tractography matrices. Spearman rank correlation coefficients were calculated
between the AMBCA matrix values and the tractography matrix values. Parent-level correlations were calculated after
summing values within the twelve major parent regions. Connectivity visualization is adapted from Oh et al., 2014.7
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Figure 2: Connectivity ROC analysis. As discussed in Oh et al., 2014,7 true positives were defined as connections in
the Allen data with a value greater than 10−3.5. Curves were constructed by sweeping the streamline number defining
a positive connection in the tractography data. For all false positive fraction levels, the microCT data achieves a higher
true positive fraction than dMRI, resulting in a higher AUC; however, both modalities achieve results similar to random
tracking.
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Figure 3: Distance-controlled ROC analysis. Connections are grouped into 1 mm bins by the Euclidean distance between
the centers of mass of the source and target regions. ROC curves within each bin are shown in the top row, and the
resulting AUC values are shown in the bottom row. The colormap indicates source-target distance, and gray bars indicate
performance from the random control. AUC falls below the control value after around 6 mm for microCT and 2 mm for
dMRI.
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Figure 4: (Left) Distributions of Spearman rank correlation coefficients between tract density images and neural tracer
images. (Right) Distributions of the coefficient differences between each modality and the corresponding control data.
The difference distribution for microCT has a mean greater than 0, with a paired t-test p-value of p � 0.01, while the
difference distribution for dMRI was not significantly different than 0 (p > 0.05).
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Figure 5: Maximum intensity projections of tracer and tractography results. The top set represents a tractography
image with an average Spearman correlation coefficient, and the bottom represents the tractography image with the
highest Spearman correlation coefficient. This illustrates that there is still significant mistracking for a majority of these
experiments, which is important to consider when interpreting the connectome results.

3 Other requirements

Synopsis (100 words)

In this study, we generated tractography-derived, mesoscale mouse “connectomes” from diffusion MRI and synchrotron

microCT data on the same mouse brain and evaluated their accuracy using anterograde tracer data from the Allen Mouse

Brain Connectivity Atlas. We are developing whole-brain synchrotron microCT, which provides micron-level isotropic

resolution across whole mouse brains with no physical sectioning. Even when binning the microCT orientation information

to the MRI resolution, microCT tractography outperformed MRI. However, both datasets performed similarly to a
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tractography connectome constructed entirely with random orientation data, highlighting the importance of understanding

geometric biases in tractography connectome construction.

Summary of main findings (250 characters)

With synchrotron microCT, local fiber orientation estimates can be calculated across whole mouse brains. Tractography

connectomes from microCT outperformed diffusion MRI, however both show poor performance when controlling for

geometric biases.
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